手把手带你用DeepSeek-R1和Ollama搭建本地应用,一文搞定!
时间:2025-04-22 | 作者: | 阅读:0作者:昊然,Datawhale成员
昨天文章《deepseek r1本地部署,小白教程来了!》的预告来兑现了。同时,有学习者问「可以上传文件啥的吗」?有的兄弟,有的。今天完整教程,它来了!

handy-ollama 开源教程:https://github.com/datawhalechina/handy-ollama
在线阅读地址:https://datawhalechina.github.io/handy-ollama
同时,再预告一下,下周三的二月「组队学习」会有手把手带你部署本教程的课程。
完整教程本教程将详细介绍如何利用 DeepSeek R1 和 Ollama 构建本地化的 RAG(检索增强生成)应用。
我们将通过实例演示完整的实现流程,包括文档处理、向量存储、模型调用等关键步骤。
本教程选用 DeepSeek-R1 1.5B 作为基础语言模型。
考虑到不同模型具有各自的特点和性能表现,读者可以根据实际需求选择其他合适的模型来实现 RAG 系统。
注:本文档包含核心代码片段和详细解释。完整代码可见 notebook (https://github.com/datawhalechina/handy-ollama/blob/main/notebook/C7/DeepSeek_R1_RAG/%E4%BD%BF%E7%94%A8%20DeepSeek%20R1%20%E5%92%8C%20Ollama%20%E5%AE%9E%E7%8E%B0%E6%9C%AC%E5%9C%B0%20RAG%20%E5%BA%94%E7%94%A8.ipynb)。
前期准备首先,我们需要下载 Ollama 以及配置相关环境。
Ollama 的 GitHub仓库 (https://github.com/ollama/ollama)中提供了详细的说明,简单总结如下:
Step1:下载 Ollama下载(https://ollama.com/download)并双击运行 Ollama 应用程序。

在命令行输入 ollama,如果出现以下信息,说明 Ollama 已经成功安装。

命令行窗口运行以下命令,部署模型。
ollama run deepseek-r1:1.5b

也可以从命令行直接运行部署模型,例如 ollama run deepseek-r1:1.5b。

注意如果只想使用 Ollama 部署 DeepSeek R1 模型则无需进行以下步骤。
Step5:安装依赖代码语言:javascript代码运行次数:0运行复制# langchain_communitypip install langchain langchain_community# Chromapip install langchain_chroma# Ollamapip install langchain_ollama登录后复制
完成前期准备工作后,让我们开始逐步构建基于 LangChain、Ollama 和 DeepSeek R1 的本地 RAG 应用。下面将详细介绍具体实现步骤。
本地 RAG 应用实现1. 文档加载
加载 PDF 文档并将其切分为适当大小的文本块。
代码语言:javascript代码运行次数:0运行复制from langchain_community.document_loaders import PDFPlumberLoaderfile = ”DeepSeek_R1.pdf“# Load the PDFloader = PDFPlumberLoader(file)docs = loader.load()from langchain.text_splitter import RecursiveCharacterTextSplittertext_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=0)all_splits = text_splitter.split_documents(docs)登录后复制
2. 初始化向量存储
使用 Chroma 数据库存储文档向量,并配置 Ollama 提供的嵌入模型。
代码语言:javascript代码运行次数:0运行复制from langchain_chroma import Chromafrom langchain_ollama import OllamaEmbeddingslocal_embeddings = OllamaEmbeddings(model=”nomic-embed-text“)vectorstore = Chroma.from_documents(documents=all_splits, embedding=local_embeddings)登录后复制
3. 构建 Chain 表达式
设置模型和提示模板,构建处理链。
代码语言:javascript代码运行次数:0运行复制from langchain_core.output_parsers import StrOutputParserfrom langchain_core.prompts import ChatPromptTemplatefrom langchain_ollama import ChatOllamamodel = ChatOllama( model=”deepseek-r1:1.5b“,)prompt = ChatPromptTemplate.from_template( ”Summarize the main themes in these retrieved docs: {docs}“)# 将传入的文档转换成字符串的形式def format_docs(docs): return ”nn“.join(doc.page_content for doc in docs)chain = {”docs“: format_docs} | prompt | model | StrOutputParser()question = ”What is the purpose of the DeepSeek project?“docs = vectorstore.similarity_search(question)chain.invoke(docs)登录后复制
4. 带有检索的 QA
整合检索和问答功能。
代码语言:javascript代码运行次数:0运行复制from langchain_core.runnables import RunnablePassthroughRAG_TEMPLATE = ”“”You are an assistant for question-answering tasks. Use the following pieces of retrieved context to answer the question. If you don't know the answer, just say that you don't know. Use three sentences maximum and keep the answer concise.<context>{context}</context>Answer the following question:{question}“”“rag_prompt = ChatPromptTemplate.from_template(RAG_TEMPLATE)retriever = vectorstore.as_retriever()qa_chain = ( {”context“: retriever | format_docs, ”question“: RunnablePassthrough()} | rag_prompt | model | StrOutputParser())question = ”What is the purpose of the DeepSeek project?“# Runqa_chain.invoke(question)登录后复制总结
本教程详细介绍了如何使用 DeepSeek R1 和 Ollama 构建本地化的 RAG 应用系统。我们通过四个主要步骤实现了完整的功能:
文档处理:使用 PDFPlumberLoader 加载 PDF 文档,并通过 RecursiveCharacterTextSplitter 将文本切分成适当大小的块。向量存储:利用 Chroma 数据库和 Ollama 的嵌入模型建立向量存储系统,为后续的相似度检索提供基础。Chain 构建:设计并实现处理链,将文档处理、提示模板和模型响应整合成流程化的处理过程。RAG 实现:通过整合检索和问答功能,实现了完整的检索增强生成系统,能够基于文档内容回答用户问询。通过本教程,可以快速搭建起自己的本地 RAG 系统,并根据实际需求进行定制化改进。建议在实践中多尝试不同的模型和参数配置,以获得最佳的使用效果。
注: 使用 streamlit 或 FastAPI 等工具,可以将本地 RAG 应用部署为 Web 服务,实现更广泛的应用场景。
仓库中也提供了 app.py (https://github.com/datawhalechina/handy-ollama/blob/main/notebook/C7/DeepSeek_R1_RAG/app.py)文件,可以直接运行该文件,启动 Web 服务。
参考文档 Build a RAG System with DeepSeek R1 & Ollama(https://apidog.com/blog/rag-deepseek-r1-ollama/)。
注意:运行该代码前,要提前运行 Ollama 服务。
福利游戏
相关文章
更多-
- ios支付宝自动续费怎么关闭 iOS端支付宝自动续费关闭指南
- 时间:2025-05-31
-
- 今日头条怎么发视频 今日头条视频发布教程
- 时间:2025-05-31
-
- 起点作家助手app如何查看总稿费
- 时间:2025-05-31
-
- 高德地图DIY地图在哪里
- 时间:2025-05-31
-
- qq阅读怎么调夜间模式?qq阅读调夜间模式操作步骤一览
- 时间:2025-05-31
-
- iphone触控id屏幕无反应无法激活怎么办
- 时间:2025-05-31
-
- 撕歌APP怎么邀请好友进房间
- 时间:2025-05-31
-
- 多多进宝如何绑定拼多多卖货-多多进宝绑定拼多多卖货的方法
- 时间:2025-05-31
精选合集
更多大家都在玩
大家都在看
更多-
- 区块链合约平台:开启全球交易新纪元
- 时间:2025-05-31
-
- 魔兽世界索罗夫宝藏获取方法
- 时间:2025-05-31
-
- Venom币起源:解决交易痛点
- 时间:2025-05-31
-
- 《金铲铲之战》三冠冕无限爆金币攻略
- 时间:2025-05-31
-
- 魔兽世界博学者的罩衫怎么获取
- 时间:2025-05-31
-
- Smittix预售筹1430万,瞄准跨境支付
- 时间:2025-05-31
-
- 鸣潮2.2幽夜幻梦任务流程
- 时间:2025-05-31
-
- 《幸福里》查看收藏记录方法
- 时间:2025-05-31