【PaddleSeg实践范例】使用PP-LiteSeg进行遥感道路分割
时间:2025-07-17 | 作者: | 阅读:0本教程介绍使用PP-LiteSeg模型对遥感图像道路进行分割的全流程。先配置含PaddlePaddle(不低于2.0.2)和PaddleSeg的环境,再用DeepGlobe数据集(分训练、验证、测试集),通过指定配置文件训练PP-LiteSeg和OCRNet模型,两者精度相近但前者速度快7倍。还涵盖模型预测、结果可视化及部署相关内容。
1 简介
本教程使用PP-LiteSeg模型对遥感图像中的道路进行分割。
PP-LiteSeg模型是PaddleSeg团队自研的轻量级语义分割模型,结构如下。
PP-LiteSeg模型的具体介绍请参考链接,欢迎Star收藏,关注最新消息。
下面教程,将带大家完整的跑通模型训练、预测、可视化全流程。
2 环境准备
请按照以下步骤配置相应的环境。
准备PaddlePaddle
PaddlePaddle版本要求不低于 2.0.2, 本教程在PaddlePaddle 2.2.2下验证通过。
由于图像分割模型计算开销大,推荐安装GPU版本的PaddlePaddle。
如果在AI Studio上运行此项目,请选择使用GPU版本的环境,默认已经安装了PaddlePaddle。
如果在本地运行此项目,需要自行安装PaddlePaddle,详细安装教程请参考PaddlePaddle官网。
准备PaddleSeg
由于本教程使用的演示代码不是PaddleSeg核心功能,所以相关代码没有合入到PaddleSeg。
我们在~/work/目录下存放了PaddleSeg代码和本教程使用到的代码,可以直接解压使用。
In [?]%cd ~/work!rm -rf PaddleSeg!tar xf PaddleSeg.tar登录后复制
安装PaddleSeg依赖
执行如下命令,在环境中安装PaddleSeg需要的依赖库。
In [?]%cd ~/work/PaddleSeg!pip install -r requirements.txt登录后复制
3 数据准备
我们使用DeepGlobe开源数据集作为本教程的演示数据集。
DeepGlobe数据集已经整理成如下格式。
deepglobe├── readme.md├── test.txt├── train├── train.txt├── valid└── val.txt登录后复制
我们将标注的遥感图片划分为训练集、验证集和测试集。
- 训练集图片:4980张
- 验证集图片:622张
- 测试集图片:624张
train.txt、val.txt、test.txt分别表示训练集、验证集和测试的划分,保存的内容如下。
train/81456_sat.jpg train/81456_mask.pngtrain/814574_sat.jpg train/814574_mask.pngtrain/814591_sat.jpg train/814591_mask.pngtrain/814649_sat.jpg train/814649_mask.png登录后复制
整理好的Deepglobe数据集已经在~/data目录下,我们进行解压,然后链接到PaddleSeg/data目录下,用于后续训练测试使用。
In [?]# 解压数据%cd ~/data/data141168!tar xf deepglobe.tar# 链接数据!mkdir -p ~/work/PaddleSeg/data!ln -s ~/data/data141168/deepglobe ~/work/PaddleSeg/data!ls ~/work/PaddleSeg/data登录后复制
4 模型训练
配置文件
遥感道路分割的所有配置文件都在PaddleSeg/configs/road_seg/目录下。
PaddleSeg/configs/road_seg├── deepglobe.yml├── ocrnet_hrnetw18_deepglobe_1024x1024_80k.yml├── pp_liteseg_stdc1_deepglobe_1024x1024_80k.yml└── pp_liteseg_stdc2_deepglobe_1024x1024_80k.yml登录后复制
其中,deepglobe.yml文件定义了基础信息,比如训练集、测试集、优化器、学习率等。
其他文件定义了模型相关的信息,比如pp_liteseg_stdc1_deepglobe_1024x1024_80k.yml的内容如下。
_base_: './deepglobe.yml'model: type: PPLiteSeg backbone: type: STDC1 pretrained: https://bj.bcebos.com/paddleseg/dygraph/PP_STDCNet1.tar.gz arm_out_chs: [32, 64, 128] seg_head_inter_chs: [32, 64, 64]loss: types: - type: OhemCrossEntropyLoss min_kept: 260000 - type: OhemCrossEntropyLoss min_kept: 260000 - type: OhemCrossEntropyLoss min_kept: 260000 coef: [1, 1, 1]登录后复制
训练
进入~/work/PaddleSeg目录,后续所有命令都在该目录下执行,结果也保存在该目录下。
在PaddleSeg目录下执行如下命令,开始训练PP-LiteSeg和OCRNet两个模型。 其中,输入参数config为配置文件的路径,如果需要训练其他模型,可以修改为其他配置文件。PaddleSeg完整的训练文档,请参考链接。
训练过程比较久,可以通过log输出查看需要的时间。训练结束后,模型权重保存在output对应的目录下。
注意:默认提供的配置文件是使用4卡进行训练,如果使用单卡训练,需要将学习率减小为1/4、iters增大4倍。
In [?]# train pp_liteseg%cd ~/work/PaddleSeg/!python train.py --config configs/road_seg/pp_liteseg_stdc1_deepglobe_1024x1024_80k.yml --do_eval --num_workers 3 --save_interval 1000 --save_dir output/pp_liteseg_stdc1_deepglobe登录后复制In [?]
# train ocrnet%cd ~/work/PaddleSeg/!python train.py --config configs/road_seg/ocrnet_hrnetw18_deepglobe_1024x1024_80k.yml --do_eval --num_workers 3 --save_interval 1000 --save_dir output/ocrnet_hrnetw18_deepglobe登录后复制
完成PP-LiteSeg和OCRNet模型的训练后,精度和速度如下表。
可以看到,PP-LiteSeg和OCRNet模型的精度基本相同,但是PP-LiteSeg的推理速度比OCRNet快了7倍。
5 模型预测
预测
加载训练好的模型权重,或者使用提供的模型权重,可以对测试集进行测试。
执行如下命令,下载已经训练好的模型权重,对deepglobe的测试集进行预测。
In [?]%cd ~/work/PaddleSeg!mkdir pretrained%cd pretrained!wget https://paddleseg.bj.bcebos.com/dygraph/demo/pp_liteseg_stdc1_deepglobe.pdparams!wget https://paddleseg.bj.bcebos.com/dygraph/demo/ocrnet_hrnetw18_deepglobe.pdparams%cd ~/work/PaddleSeg!python predict.py --config configs/road_seg/pp_liteseg_stdc1_deepglobe_1024x1024_80k.yml --model_path pretrained/pp_liteseg_stdc1_deepglobe.pdparams --image_path data/deepglobe/test.txt --save_dir output/pp_liteseg_stdc1_deepglobe_1024x1024_80k/pred_test登录后复制
结果可视化
预测执行结束后,在output/pp_liteseg_stdc1_deepglobe_1024x1024_80k/pred_test目录下,可以查看预测结果。
?
6 模型部署
导出预测模型进行部署,可以加载模型的推理速度。
PaddleSeg提供了详细教程,指导进行模型导出和模型部署,具体请参考链接。
请点击此处查看本环境基本用法.?Please click?here?for more detailed instructions.
福利游戏
相关文章
更多-
- 基于飞桨复现Tokens-to-Token ViT
- 时间:2025-07-17
-
- DataFountain 产品评论观点提取「0.70230547」
- 时间:2025-07-17
-
- EDSR图像超分重构
- 时间:2025-07-17
-
- 【AI达人创造营第二期】基于LSTM的现代诗生成器
- 时间:2025-07-17
-
- WebAI.js:一个简单的网页前端部署工具
- 时间:2025-07-17
-
- ERFNet:用于实时语义分割的高效残差分解卷积神经网络
- 时间:2025-07-17
-
- 基于飞桨实现乒乓球时序动作定位大赛-baseline
- 时间:2025-07-17
-
- c++扩展算子开发③:CUDA算子的开发
- 时间:2025-07-17
大家都在玩
热门话题
大家都在看
更多-
- 女童患重病想退年卡 景区仅退款:年卡给小朋友留着
- 时间:2025-07-17
-
- 国外化妆品包装标注英寸容量,怎么换算成厘米对应体积,英寸和厘米怎么换算?
- 时间:2025-07-17
-
- 雅迪九号全网下架电动自行车 经销商:新国标将实施 正在“清库存”
- 时间:2025-07-17
-
- Uniswap如何购买
- 时间:2025-07-17
-
- 毒蘑菇病毒测试入口 点击进入毒蘑菇病毒性能测试
- 时间:2025-07-17
-
- 搜书吧官网入口2025 搜书吧官网最新2025进入
- 时间:2025-07-17
-
- BtcV暴跌!原因分析及抄底时机?
- 时间:2025-07-17
-
- 芬兰北极圈气温超30℃ 当地人热到光膀子上街 居民称“和南欧差不多一样了
- 时间:2025-07-17