位置:首页 > 新闻资讯 > 图像质量与相似度评估指标 SSIM 和 MS-SSIM 的 Paddle 实现

图像质量与相似度评估指标 SSIM 和 MS-SSIM 的 Paddle 实现

时间:2025-07-17  |  作者:  |  阅读:0

本文介绍了基于图像结构相关性的经典质量评估方法SSIM和MS-SSIM。SSIM通过亮度、对比度、结构三个模块计算图像相似度;MS-SSIM则是多尺度的SSIM。文中还提及Paddle的实现,包括paddle_msssim包的使用,测试对比显示其与其他实现结果接近且速度有优势,并给出了计算指标和作为损失函数的示例。

图像质量与相似度评估指标 SSIM 和 MS-SSIM 的 Paddle 实现_wishdown.com

引入

参考资料

算法介绍

SSIM

MS-SSIM

  • MS-SSIM(Multi-Scale Structural Similarity)即多尺度结构相似性指数

  • 是一种基于多尺度(图片按照一定规则,由大到小缩放)的 SSIM 指数

  • 具体的计算公式如下:

    图像质量与相似度评估指标 SSIM 和 MS-SSIM 的 Paddle 实现_wishdown.com

Paddle 实现

  • 基于?Pytorch MS-SSIM?项目开发了一个快速、可微分的 SSIM 和 MS-SSIM 的 Paddle 实现

  • 可以通过安装并调用 paddle_msssim 包快速实现 SSIM 和 MS-SSIM 的计算

  • Paddle MS-SSIM 与 SKImage、TensorFlow 和 Pytorch MS-SSIM 实现的测试对比结果如下:

    outputs(AMD Ryzen 4600H): =================================== Test SSIM=======================================> Single ImageRepeat 10 timessigma=0.0 ssim_skimage=1.000000 (247.7732 ms), ssim_tf=1.000000 (277.2696 ms), ssim_paddle=1.000000 (179.4677 ms), ssim_torch=1.000000 (183.6994 ms)sigma=10.0 ssim_skimage=0.932399 (226.1620 ms), ssim_tf=0.932640 (257.2435 ms), ssim_paddle=0.932636 (163.2263 ms), ssim_torch=0.932400 (179.1418 ms)sigma=20.0 ssim_skimage=0.786023 (224.1826 ms), ssim_tf=0.786032 (279.2126 ms), ssim_paddle=0.786017 (158.3070 ms), ssim_torch=0.786027 (180.0890 ms)sigma=30.0 ssim_skimage=0.637174 (237.5582 ms), ssim_tf=0.637183 (267.6092 ms), ssim_paddle=0.637165 (167.9277 ms), ssim_torch=0.637178 (181.7910 ms)sigma=40.0 ssim_skimage=0.515865 (221.0388 ms), ssim_tf=0.515876 (264.3230 ms), ssim_paddle=0.515857 (170.7676 ms), ssim_torch=0.515869 (189.0941 ms)sigma=50.0 ssim_skimage=0.422551 (222.6846 ms), ssim_tf=0.422558 (273.1971 ms), ssim_paddle=0.422542 (168.3579 ms), ssim_torch=0.422554 (176.7442 ms)sigma=60.0 ssim_skimage=0.351337 (215.1536 ms), ssim_tf=0.351340 (270.5560 ms), ssim_paddle=0.351325 (164.3315 ms), ssim_torch=0.351340 (194.6781 ms)sigma=70.0 ssim_skimage=0.295752 (210.0273 ms), ssim_tf=0.295756 (272.1814 ms), ssim_paddle=0.295744 (169.3864 ms), ssim_torch=0.295755 (178.9230 ms)sigma=80.0 ssim_skimage=0.253164 (239.2978 ms), ssim_tf=0.253169 (260.8894 ms), ssim_paddle=0.253157 (184.7061 ms), ssim_torch=0.253166 (181.4640 ms)sigma=90.0 ssim_skimage=0.219240 (224.7329 ms), ssim_tf=0.219245 (270.3727 ms), ssim_paddle=0.219235 (172.3580 ms), ssim_torch=0.219242 (180.5838 ms)sigma=100.0 ssim_skimage=0.192630 (238.8582 ms), ssim_tf=0.192634 (261.4317 ms), ssim_paddle=0.192624 (166.0294 ms), ssim_torch=0.192632 (175.7241 ms)Pass!====> BatchPass!登录后复制

    =================================== Test MS-SSIM=======================================> Single ImageRepeat 10 timessigma=0.0 msssim_tf=1.000000 (534.9398 ms), msssim_paddle=1.000000 (231.7381 ms), msssim_torch=1.000000 (257.3238 ms)sigma=10.0 msssim_tf=0.991148 (525.1758 ms), msssim_paddle=0.991147 (213.8527 ms), msssim_torch=0.991101 (243.9299 ms)sigma=20.0 msssim_tf=0.967450 (523.3070 ms), msssim_paddle=0.967447 (217.2415 ms), msssim_torch=0.967441 (253.1073 ms)sigma=30.0 msssim_tf=0.934692 (538.5145 ms), msssim_paddle=0.934687 (215.2203 ms), msssim_torch=0.934692 (242.5429 ms)sigma=40.0 msssim_tf=0.897363 (558.0346 ms), msssim_paddle=0.897357 (219.1107 ms), msssim_torch=0.897362 (249.1027 ms)sigma=50.0 msssim_tf=0.859276 (524.8582 ms), msssim_paddle=0.859267 (232.4189 ms), msssim_torch=0.859275 (263.1328 ms)sigma=60.0 msssim_tf=0.820967 (512.8726 ms), msssim_paddle=0.820958 (223.7422 ms), msssim_torch=0.820965 (251.9713 ms)sigma=70.0 msssim_tf=0.784204 (529.6149 ms), msssim_paddle=0.784194 (213.1742 ms), msssim_torch=0.784203 (244.9676 ms)sigma=80.0 msssim_tf=0.748574 (545.3014 ms), msssim_paddle=0.748563 (222.8581 ms), msssim_torch=0.748572 (261.0413 ms)sigma=90.0 msssim_tf=0.715980 (538.3886 ms), msssim_paddle=0.715968 (214.4464 ms), msssim_torch=0.715977 (282.6247 ms)sigma=100.0 msssim_tf=0.683882 (540.9150 ms), msssim_paddle=0.683870 (218.5596 ms), msssim_torch=0.683880 (244.1856 ms)Pass====> BatchPass登录后复制

  • 具体的安装使用方法如下:

安装

In [?]

!pip install paddle_msssim登录后复制

计算 SSIM 和 MS-SSIM 指标

  • 这里使用如下三张图像来计算他们之间的 SSIM 和 MS-SSIM 指标,结果如下:

    Image@@##@@@@##@@@@##@@Simga050100SSIM1.0000000.4229270.192567MS-SSIM1.0000000.8588610.684299
  • 具体的计算代码如下:

In [20]

import cv2import paddlefrom paddle_msssim import ssim, ms_ssimdef imread(img_path): img = cv2.imread(img_path) return paddle.to_tensor(img.transpose(2, 0, 1)[None, ...], dtype=paddle.float32)simga_0 = imread('./images/simga_0.png')simga_50 = imread('./images/simga_50.png')simga_100 = imread('./images/simga_100.png')ssim_0 = ssim(simga_0, simga_0)ssim_50 = ssim(simga_0, simga_50)ssim_100 = ssim(simga_0, simga_100)print('[SSIM] simga_0: %f simga_50: %f simga_100: %f' % (ssim_0, ssim_50, ssim_100))ms_ssim_0 = ms_ssim(simga_0, simga_0)ms_ssim_50 = ms_ssim(simga_0, simga_50)ms_ssim_100 = ms_ssim(simga_0, simga_100)print('[MS-SSIM] simga_0: %f simga_50: %f simga_100: %f' % (ms_ssim_0, ms_ssim_50, ms_ssim_100))登录后复制

[SSIM] simga_0: 1.000000 simga_50: 0.422927 simga_100: 0.192567[MS-SSIM] simga_0: 1.000000 simga_50: 0.858861 simga_100: 0.684299登录后复制

作为损失函数使用

  • 随机初始化的一张雪花图像,使用 SSIM 和 MS-SSIM 作为损失函数去拟合目标图像
In [31]

import osimport sysimport paddleimport numpy as npfrom PIL import Imagefrom paddle.optimizer import Adamfrom paddle_msssim import SSIM, MS_SSIMloss_type = 'ssim'assert loss_type in ['ssim', 'msssim']if loss_type == 'ssim': loss_obj = SSIM(win_size=11, win_sigma=1.5, data_range=1, size_average=True, channel=3)else: loss_obj = MS_SSIM(win_size=11, win_sigma=1.5, data_range=1, size_average=True, channel=3)np_img1 = np.array(Image.open(”./images/simga_0.png“))img1 = paddle.to_tensor(np_img1.transpose(2, 0 , 1)).unsqueeze(0) / 255.0img2 = paddle.rand(img1.shape)img1 = paddle.to_tensor(img1, stop_gradient=True)img2 = paddle.to_tensor(img2, stop_gradient=False)with paddle.no_grad(): ssim_value = loss_obj(img1, img2).item() print(”Initial %s: %f:“ % (loss_type, ssim_value))optimizer = Adam(parameters=[img2], learning_rate=0.05)step = 0while ssim_value < 0.9999: step += 1 optimizer.clear_grad() loss = loss_obj(img1, img2) (1 - loss).backward() optimizer.step() ssim_value = loss.item() if step % 10 == 0: print('step: %d %s: %f' % (step, loss_type, ssim_value))img2_ = (img2 * 255.0).squeeze()np_img2 = img2_.detach().numpy().astype(np.uint8).transpose(1, 2, 0)results = Image.fromarray(np.concatenate([np_img1, np_img2], 1))results.save('results_%s.png' % loss_type)results登录后复制

Initial ssim: 0.010401:step: 10 ssim: 0.225660step: 20 ssim: 0.733606step: 30 ssim: 0.919254step: 40 ssim: 0.970057step: 50 ssim: 0.990348step: 60 ssim: 0.998122step: 70 ssim: 0.999767登录后复制

<PIL.Image.Image image mode=RGB size=1024x768 at 0x7F157A7B6F50>登录后复制

更多

  • 更多使用细节和示例可以参考 Paddle-MSSSIM 的?Github 仓库

图像质量与相似度评估指标 SSIM 和 MS-SSIM 的 Paddle 实现_wishdown.com

图像质量与相似度评估指标 SSIM 和 MS-SSIM 的 Paddle 实现_wishdown.com

图像质量与相似度评估指标 SSIM 和 MS-SSIM 的 Paddle 实现_wishdown.com

福利游戏

相关文章

更多

精选合集

更多

大家都在玩

热门话题

大家都在看

更多