位置:首页 > 新闻资讯 > PaddleHub人脸关键点检测:一键生成蜡笔小新的远房表弟

PaddleHub人脸关键点检测:一键生成蜡笔小新的远房表弟

时间:2025-07-18  |  作者:  |  阅读:0

本文介绍了将人像转化为“蜡笔小宸”(蜡笔小新风格)的方法。步骤包括:登录“蜡笔大陆”安装所需库;用PaddleHub进行人脸68个关键点检测,为后续操作打基础;提取眉毛关键点,通过连线并控制宽度刻画粗眉;运用图像局部平移算法,依据人脸关键点进行“胖脸”操作,使脸部更圆润。还可通过run.py一键执行,调整参数获得对应效果。

PaddleHub人脸关键点检测:一键生成蜡笔小新的远房表弟_wishdown.com

一键寻找蜡笔小新的远方表弟

蜡笔小新应该是好多小伙伴的童年回忆之一,不会有人不喜欢蜡笔小新那招牌的粗眉毛以及圆嘟嘟的小脸蛋吧!不会吧不会吧!下面嘞,我们以宸哥作为工具人,还原蜡笔小新的远房表弟————蜡笔小宸!

让我们先看一下蜡笔小宸,一睹为快!

PaddleHub人脸关键点检测:一键生成蜡笔小新的远房表弟_wishdown.com

跟着我的步伐,寻找蜡笔小新的远房表弟之路,正式开启!(二三四步骤为过程演示~一键寻找请在登陆蜡笔大陆之后跳至第五部分)

一、登陆蜡笔大陆

In [?]

!pip install --upgrade pip!pip install opencv-python==4.5.4.60!pip install paddlehub==2.1.1登录后复制

二、使用PaddleHub进行人脸关键点检测

人脸关键点检测是人脸识别和分析领域中的关键一步,它是诸如自动人脸识别、表情分析、三维人脸重建及三维动画等其它人脸相关问题的前提和突破口。该 PaddleHub Module 的模型转换自 https://github.com/lsy17096535/face-landmark ,支持同一张图中的多个人脸检测。此步的目的是获取人脸68个关键点的坐标,如下图所示。有了人脸68个关键点的坐标,再接下来进行蜡笔眉的刻画,以及嘟嘟脸的生成就会轻松许多。

PaddleHub人脸关键点检测:一键生成蜡笔小新的远房表弟_wishdown.com

In [3]

import cv2import paddlehub as hubimport matplotlib.pyplot as plt import matplotlib.image as mpimgimport numpy as npimport mathfrom PIL import Imagesrc_img = cv2.imread('example.jpg')# 加载模型并进行预测module = hub.Module(name=”face_landmark_localization“)result = module.keypoint_detection(images=[src_img])tmp_img = src_img.copy()for index, point in enumerate(result[0]['data'][0]):# cv2.putText(img, str(index), (int(point[0]), int(point[1])), cv2.FONT_HERSHEY_COMPLEX, 3, (0,0,255), -1)cv2.circle(tmp_img, (int(point[0]), int(point[1])), 2, (0, 0, 255), -1)res_img_path = 'face_landmark.jpg'cv2.imwrite(res_img_path, tmp_img)img = mpimg.imread(res_img_path) # 展示预测68个关键点结果(若未显示关键点可视化结果请再次运行此cell)plt.figure(figsize=(10,10))plt.imshow(img) plt.axis('off') plt.show()登录后复制

[2021-11-30 14:27:46,626] [ WARNING] - The _initialize method in HubModule will soon be deprecated, you can use the __init__() to handle the initialization of the object[2021-11-30 14:27:46,743] [ WARNING] - The _initialize method in HubModule will soon be deprecated, you can use the __init__() to handle the initialization of the object--- Fused 0 subgraphs into layer_norm op.--- Fused 0 subgraphs into layer_norm op.登录后复制

<Figure size 720x720 with 1 Axes>登录后复制登录后复制登录后复制

三、刻画蜡笔眉

在上一步中我们得到了人脸68个关键点坐标,其中18-22,23-27为眉毛的坐标值。想得到蜡笔小新这照片的粗粗眉,简单来讲只需将眉毛的坐标点连成线,控制适当的宽度即可。

这里可以使用opencv的line()函数轻松实现。

PaddleHub人脸关键点检测:一键生成蜡笔小新的远房表弟_wishdown.com

In [4]

def thick_eyebrows(image, face_landmark, width):for i in range(18-1, 22-1):cv2.line(image, face_landmark[i], face_landmark[i+1], (0, 0, 0), width)for i in range(23-1, 27-1):cv2.line(image, face_landmark[i], face_landmark[i+1], (0, 0, 0), width)return image# 提取出人脸关键点坐标face_landmark = np.array(result[0]['data'][0], dtype='int')# 生成蜡笔小新版眉毛width = 8src_img = thick_eyebrows(src_img, face_landmark, width)cv2.imwrite('thick_eyebrows.jpg', src_img)img = mpimg.imread('thick_eyebrows.jpg') # 展示蜡笔眉plt.figure(figsize=(10,10))plt.imshow(img) plt.axis('off') plt.show()登录后复制

<Figure size 720x720 with 1 Axes>登录后复制登录后复制登录后复制

四、打肿脸充小新

在这里,使用了图像局部平移算法。思路是:由变形前坐标,根据变形映射关系,得到变形后坐标。这其中变形映射关系是最关键的,不同的映射关系,将得到不同的变形效果。平移、缩放、旋转,对应的是不同的映射关系,即不同的变换公式。当然实际在计算过程中,用的是逆变换,即由变形后坐标,根据逆变换公式反算变形前坐标,然后插值得到该坐标rgb像素值,将该rgb值作为变形后坐标对应的像素值。这样才能保证变形后的图像是连续、完整的。

In [5]

# 进行胖脸操作def fat_face(image, face_landmark): end_point = face_landmark[30] # 胖左脸,3号点到5号点的距离作为一次胖脸距离 dist_left = np.linalg.norm(face_landmark[3] - face_landmark[5]) image = local_traslation_warp(image, face_landmark[3], end_point, dist_left) # 胖右脸,13号点到15号点的距离作为一次胖脸距离 dist_right = np.linalg.norm(face_landmark[13] - face_landmark[15]) image = local_traslation_warp(image, face_landmark[13], end_point, dist_right) return image登录后复制In [6]

# 局部平移算法def local_traslation_warp(image, start_point, end_point, radius):radius_square = math.pow(radius, 2)image_cp = image.copy()dist_se = math.pow(np.linalg.norm(end_point - start_point), 2)height, width, channel = image.shapefor i in range(width):for j in range(height):# 计算该点是否在形变圆的范围之内# 优化,第一步,直接判断是会在(start_point[0], start_point[1])的矩阵框中if math.fabs(i - start_point[0]) > radius and math.fabs(j - start_point[1]) > radius:continuedistance = (i - start_point[0]) * (i - start_point[0]) + (j - start_point[1]) * (j - start_point[1])if distance < radius_square:# 计算出(i,j)坐标的原坐标# 计算公式中右边平方号里的部分ratio = (radius_square - distance) / (radius_square - distance + dist_se)ratio = ratio * ratio# 映射原位置new_x = i + ratio * (end_point[0] - start_point[0])new_y = j + ratio * (end_point[1] - start_point[1])new_x = new_x if new_x >= 0 else 0new_x = new_x if new_x < height - 1 else height - 2new_y = new_y if new_y >= 0 else 0new_y = new_y if new_y < width - 1 else width - 2# 根据双线性插值法得到new_x, new_y的值image_cp[j, i] = bilinear_insert(image, new_x, new_y)return image_cp# 双线性插值法def bilinear_insert(image, new_x, new_y):w, h, c = image.shapeif c == 3:x1 = int(new_x)x2 = x1 + 1y1 = int(new_y)y2 = y1 + 1part1 = image[y1, x1].astype(np.float) * (float(x2) - new_x) * (float(y2) - new_y)part2 = image[y1, x2].astype(np.float) * (new_x - float(x1)) * (float(y2) - new_y)part3 = image[y2, x1].astype(np.float) * (float(x2) - new_x) * (new_y - float(y1))part4 = image[y2, x2].astype(np.float) * (new_x - float(x1)) * (new_y - float(y1))insertvalue = part1 + part2 + part3 + part4return insertvalue.astype(np.int8)登录后复制In [7]

# 进行胖脸操作fat_nums = 3for i in range(1, fat_nums):src_img = fat_face(src_img, face_landmark)cv2.imwrite('res.jpg', src_img)img = mpimg.imread('res.jpg') # 展示蜡笔眉+嘟嘟嘴plt.figure(figsize=(10,10))plt.imshow(img) plt.axis('off') plt.show()登录后复制

<Figure size 720x720 with 1 Axes>登录后复制登录后复制登录后复制

五、一键执行~(上述为过程展示部分,可在此处一键寻找远方表弟哦)

run.py中引出了四个参数,分别是:

img_path 输入图片路径width 眉毛宽度res_img_path 输出图片路径fat_nums 嘟嘟脸系数登录后复制

依照参数描述进行相应的修改即可,顺利运行下方命令并打印出done之后,可在左侧(/home/aistudio)目录下找到输出图片(默认:res.jpg)

In [?]

!python run.py --img_path example.jpg --width 8 --res_img_path res.jpg --fat_nums 3登录后复制

来瞧瞧效果吧!(受害者不定期更新~)

PaddleHub人脸关键点检测:一键生成蜡笔小新的远房表弟_wishdown.com

PaddleHub人脸关键点检测:一键生成蜡笔小新的远房表弟_wishdown.com

PaddleHub人脸关键点检测:一键生成蜡笔小新的远房表弟_wishdown.com

PaddleHub人脸关键点检测:一键生成蜡笔小新的远房表弟_wishdown.com

(妈妈,妈妈,我跟PPDE大佬们同框了哈哈哈哈)

福利游戏

相关文章

更多

精选合集

更多

大家都在玩

热门话题

大家都在看

更多