位置:首页 > 新闻资讯 > 边缘检测系列1:传统边缘检测算子

边缘检测系列1:传统边缘检测算子

时间:2025-07-18  |  作者:  |  阅读:0

本文介绍了图像边缘检测的原理,指出边缘是灰度剧变处,检测基于方向导数掩码卷积。实现了通用边缘检测算子EdgeOP,集成Roberts、Prewitt等多种算子,提供四种边缘强度计算方式,并通过测试函数对比效果,展示了不同算子和计算方法的检测结果。

边缘检测系列1:传统边缘检测算子_wishdown.com

引入

算法原理

代码实现

构建通用的边缘检测算子

In [1]

import numpy as npimport paddleimport paddle.nn as nnclass EdgeOP(nn.Layer): def __init__(self, kernel): ''' kernel: shape(out_channels, in_channels, h, w) ''' super(EdgeOP, self).__init__() out_channels, in_channels, h, w = kernel.shape self.filter = nn.Conv2D(in_channels=in_channels, out_channels=out_channels, kernel_size=(h, w), padding='SAME', bias_attr=False) self.filter.weight.set_value(kernel.astype('float32')) @staticmethod def postprocess(outputs, mode=0, weight=None): ''' Input: NCHW Output: NHW(mode==1-3) or NCHW(mode==4) Params: mode: switch output mode(0-4) weight: weight when mode==3 ''' if mode==0: results = paddle.sum(paddle.abs(outputs), axis=1) elif mode==1: results = paddle.sqrt(paddle.sum(paddle.pow(outputs, 2), axis=1)) elif mode==2: results = paddle.max(paddle.abs(outputs), axis=1) elif mode==3: if weight is None: C = outputs.shape[1] weight = paddle.to_tensor([1/C] * C, dtype='float32') else: weight = paddle.to_tensor(weight, dtype='float32') results = paddle.einsum('nchw, c -> nhw', paddle.abs(outputs), weight) elif mode==4: results = paddle.abs(outputs) return paddle.clip(results, 0, 255).cast('uint8') @paddle.no_grad() def forward(self, images, mode=0, weight=None): outputs = self.filter(images) return self.postprocess(outputs, mode, weight)登录后复制

图像边缘检测测试函数

  • 为了方便测试就构建了如下的测试函数,测试同一张图片不同算子/不同边缘强度计算方法的边缘检测效果
In [2]

import osimport cv2from PIL import Imagedef test_edge_det(kernel, img_path='test.jpg'): img = cv2.imread(img_path, 0) img_tensor = paddle.to_tensor(img, dtype='float32')[None, None, ...] op = EdgeOP(kernel) all_results = [] for mode in range(4): results = op(img_tensor, mode=mode) all_results.append(results.numpy()[0]) results = op(img_tensor, mode=4) for result in results.numpy()[0]: all_results.append(result) return all_results, np.concatenate(all_results, 1)登录后复制

Roberts 算子

边缘检测系列1:传统边缘检测算子_wishdown.com

In [3]

roberts_kernel = np.array([ [[ [1, 0], [0, -1] ]], [[ [0, -1], [1, 0] ]]])_, concat_res = test_edge_det(roberts_kernel)Image.fromarray(concat_res)登录后复制

<PIL.Image.Image image mode=L size=3600x600 at 0x7F2548799F10>登录后复制

Prewitt 算子

边缘检测系列1:传统边缘检测算子_wishdown.com

In [4]

prewitt_kernel = np.array([ [[ [-1, -1, -1], [ 0, 0, 0], [ 1, 1, 1] ]], [[ [-1, 0, 1], [-1, 0, 1], [-1, 0, 1] ]], [[ [ 0, 1, 1], [-1, 0, 1], [-1, -1, 0] ]], [[ [ -1, -1, 0], [ -1, 0, 1], [ 0, 1, 1] ]]])_, concat_res = test_edge_det(prewitt_kernel)Image.fromarray(concat_res)登录后复制

<PIL.Image.Image image mode=L size=4800x600 at 0x7F251781EF10>登录后复制

Sobel 算子

边缘检测系列1:传统边缘检测算子_wishdown.com

In [5]

sobel_kernel = np.array([ [[ [-1, -2, -1], [ 0, 0, 0], [ 1, 2, 1] ]], [[ [-1, 0, 1], [-2, 0, 2], [-1, 0, 1] ]], [[ [ 0, 1, 2], [-1, 0, 1], [-2, -1, 0] ]], [[ [ -2, -1, 0], [ -1, 0, 1], [ 0, 1, 2] ]]])_, concat_res = test_edge_det(sobel_kernel)Image.fromarray(concat_res)登录后复制

<PIL.Image.Image image mode=L size=4800x600 at 0x7F251782E8D0>登录后复制

Scharr 算子

边缘检测系列1:传统边缘检测算子_wishdown.com

In [6]

scharr_kernel = np.array([ [[ [-3, -10, -3], [ 0, 0, 0], [ 3, 10, 3] ]], [[ [-3, 0, 3], [-10, 0, 10], [-3, 0, 3] ]], [[ [ 0, 3, 10], [-3, 0, 3], [-10, -3, 0] ]], [[ [ -10, -3, 0], [ -3, 0, 3], [ 0, 3, 10] ]]])_, concat_res = test_edge_det(scharr_kernel)Image.fromarray(concat_res)登录后复制

<PIL.Image.Image image mode=L size=4800x600 at 0x7F251782EE10>登录后复制

Krisch 算子

边缘检测系列1:传统边缘检测算子_wishdown.com

In [7]

Krisch_kernel = np.array([ [[ [5, 5, 5], [-3,0,-3], [-3,-3,-3] ]], [[ [-3, 5,5], [-3,0,5], [-3,-3,-3] ]], [[ [-3,-3,5], [-3,0,5], [-3,-3,5] ]], [[ [-3,-3,-3], [-3,0,5], [-3,5,5] ]], [[ [-3, -3, -3], [-3,0,-3], [5,5,5] ]], [[ [-3, -3, -3], [5,0,-3], [5,5,-3] ]], [[ [5, -3, -3], [5,0,-3], [5,-3,-3] ]], [[ [5, 5, -3], [5,0,-3], [-3,-3,-3] ]],])_, concat_res = test_edge_det(Krisch_kernel)Image.fromarray(concat_res)登录后复制

<PIL.Image.Image image mode=L size=7200x600 at 0x7F24FF09E4D0>登录后复制

Robinson算子

边缘检测系列1:传统边缘检测算子_wishdown.com

In [8]

robinson_kernel = np.array([ [[ [1, 2, 1], [0, 0, 0], [-1, -2, -1] ]], [[ [0, 1, 2], [-1, 0, 1], [-2, -1, 0] ]], [[ [-1, 0, 1], [-2, 0, 2], [-1, 0, 1] ]], [[ [-2, -1, 0], [-1, 0, 1], [0, 1, 2] ]], [[ [-1, -2, -1], [0, 0, 0], [1, 2, 1] ]], [[ [0, -1, -2], [1, 0, -1], [2, 1, 0] ]], [[ [1, 0, -1], [2, 0, -2], [1, 0, -1] ]], [[ [2, 1, 0], [1, 0, -1], [0, -1, -2] ]],])_, concat_res = test_edge_det(robinson_kernel)Image.fromarray(concat_res)登录后复制

<PIL.Image.Image image mode=L size=7200x600 at 0x7F251782EED0>登录后复制

Laplacian 算子

边缘检测系列1:传统边缘检测算子_wishdown.com

In [9]

laplacian_kernel = np.array([ [[ [1, 1, 1], [1, -8, 1], [1, 1, 1] ]], [[ [0, 1, 0], [1, -4, 1], [0, 1, 0] ]]])_, concat_res = test_edge_det(laplacian_kernel)Image.fromarray(concat_res)登录后复制

<PIL.Image.Image image mode=L size=3600x600 at 0x7F24FF0A6A90>登录后复制

总结

  • 简单介绍并实现了几种常用的传统边缘检测算子

福利游戏

相关文章

更多

精选合集

更多

大家都在玩

热门话题

大家都在看

更多