从零实践基于PaddleGAN的反向学习分割数据生成遥感图像生成
时间:2025-07-18 | 作者: | 阅读:0本文介绍利用PaddleGAN的Pix2pix模型生成遥感图像的方法。先介绍PaddleGAN及WHDLD数据集,再说明数据集准备与处理步骤,接着讲解用pix2pix模型训练的配置、过程,最后阐述预测及结果展示,实现了通过绘制标签生成对应遥感图像,解决数据不足问题。
PaddleGAN遥感图像生成
有时在使用一些遥感数据集时,常常会感觉数据不够用,能否用GAN的技术帮我们生成一些遥感图像呢?我说要有路,那便有了路~但由于技术原因一直没有做出。不过在此次GAN的七日打卡营中,我们找到了一个方便的方法。那就是使用PaddleGAN提供的Pix2pix模型,反向训练遥感分割数据集,这样我们就得到了一只神笔~当我画出一条路,那便有了一条路。具体如何做呢?请看下方分解。
0. PaddleGAN及数据集介绍
- 飞桨生成对抗网络开发套件--PaddleGAN,为开发者提供经典及前沿的生成对抗网络高性能实现,并支撑开发者快速构建、训练及部署生成对抗网络,以供学术、娱乐及产业应用。
- 数据集使用WHDLD数据集,该数据集由武汉大学在2018年发布,共有4940张256x256大小的遥感图像,包括裸地、水系、路面、道路、植被和建筑共6个类别。是一个妥妥的遥感分割数据集。(这里有个坑,因为处理的时候标签忘了转为RGB,所以水是红色的,建筑是蓝色的。。。)
1. PaddleGAN及数据集准备
- 首先当然是要克隆我们的PaddleGAN啦
- 然后解压WHDLD数据,需要通过下面的代码组合生成需要的数据,当然数据已经处理好了,也可以直接解压WHDLD-GAN数据,其中还包含有训练了200个epoch的预训练参数
# ! git clone https://gitee.com/paddlepaddle/PaddleGAN.git# ! unzip -oq data/data55589/WHDLD.zip# 只需要执行一次! mkdir -p Dataset! unzip -oq /home/aistudio/data/data82195/WHDLD-GAN.zip -d Dataset! mv Dataset/color-class.jpg work/ # 这里是要保证数据集文件夹里面干净,所以把类别和配色的对照表移动到work了登录后复制
*2. 数据集处理
这是将WHDLD数据转化为WHDLD-GAN数据,可以不用运行了,可以使用自己的数据来处理。最后处理好的数据文件应该是这样的
dataset ├── train ├── val └── test登录后复制
图片需要按照[生成风格, 原始图像]进行拼接
In [?]# ! mkdir -p Dataset/train# ! mkdir -p Dataset/val# import os# import random# import cv2# import numpy as np# from tqdm import tqdm# tmp_data_path = 'WHDLD/Images'# save_train_path = 'Dataset/train'# save_val_path = 'Dataset/val'# datas_name = os.listdir(tmp_data_path)# random.shuffle(datas_name)# for idx, data_name in enumerate(tqdm(datas_name)):# data_path = os.path.join(tmp_data_path, data_name)# target_path = data_path.replace('Images', 'ImagesPNG').replace('jpg', 'png')# data = cv2.imread(data_path) # 这里也应该转一下RGB,忘记了写,所以红色变成了水,蓝色变成了建筑# target = cv2.cvtColor(cv2.imread(target_path), cv2.COLOR_BGR2RGB)# img = np.concatenate((data, target), axis=1) # 主要就是这里需要将两个图像拼接起来# save_name = target_path.split('/')[-1]# if (idx + 1) % 20 != 0:# cv2.imwrite(os.path.join(save_train_path, save_name), img)# else:# cv2.imwrite(os.path.join(save_val_path, save_name), img)# ! rm -rf WHDLD # 减小空间登录后复制
3. 开始训练
这里我们使用的是pix2pix模型,只需要在PaddleGAN/configs中新建pix2pix_rs.yaml配置文件,然后将内容填入就好了(内容可以参考这个配置文件),其中几个地方简单一说。
epochs: 200 # 训练轮数output_dir: output_dir # 保存训练文件的文件夹enable_visualdl: true # 开启VDLmodel:…… # 不用修改,使用官方提供的pix2pix即可dataset: train: name: PairedDataset dataroot: ../Dataset/train # 数据集位置,因为数据集在PaddleGAN外面,所以需要../返回父级目录 num_workers: 4 # 不易过大,否则可能报错 batch_size: 1 # 批次大小 …… test: name: PairedDataset dataroot: ../Dataset/test # 同理 ……lr_scheduler: # 学习率设置 ……optimizer: # 生成器和判别器的优化器 ……log_config: ……snapshot_config: interval: 5 # 每多少轮保存一次模型参数登录后复制
3.1 Pix2pix
Pix2pix利用成对的图片进行图像翻译,即输入为同一张图片的两种不同风格,可用于进行风格迁移。Pix2pix是在cGAN的基础上进行改进的,cGAN的生成网络不仅会输入一个噪声图片,同时还会输入一个条件作为监督信息,pix2pix则是把另外一种风格的图像作为监督信息输入生成网络中,这样生成的fake图像就会和作为监督信息的另一种风格的图像相关,从而实现了图像翻译的过程。
Pix2pix的优化目标包含2个部分。一部分是cGAN的优化目标;另一部分是L1距离,用来约束生成图像和真实图像之间的差异,这部分借鉴了其他基于GAN做图像翻译的思想,只不过这里用L1而不是L2,目的是减少生成图像的模糊。
Pix2pix网络结构:
- 生成器采用U-Net,这是在图像分割领域应用非常广泛的网络结构,能够充分融合特征;而原本GAN中常用的生成器结构是encoder-decoder类型。
- 判别器采用PatchGAN,PatchGAN对输入图像的每个区域(patch)都输出一个预测概率值,相当于从判断输入是真还是假演变成判断输入的N*N大小区域是真还是假。
优点:pix2pix巧妙的利用了GAN的框架来为“Image-to-Image translation”的一类问题提供了通用框架。利用U-Net提升细节,并且利用PatchGAN来处理图像的高频部分。
缺点:训练需要大量的成对图片。
In [2]%cd PaddleGAN# 恢复训练(想恢复训练需要修改yaml的轮数,因为已经训练到了200轮)# ! python -u tools/main.py --config-file configs/pix2pix_rs.yaml --resume ../data/data82195/epoch_200_checkpoint.pdparams# 重新训练# ! python -u tools/main.py --config-file configs/pix2pix_rs.yaml登录后复制
/home/aistudio/PaddleGAN登录后复制
3.2 训练过程
这是训练了8个小时的结果
ppgan.engine.trainer INFO: Epoch: 200/200, iter: 0/4693 lr: 1.980e-06 D_fake_loss: 0.048 D_real_loss: 0.580 G_adv_loss: 4.508 G_L1_loss: 11.564 batch_cost: 0.03402 sec reader_cost: 0.00107 sec ips: 29.39492 images/s eta: 0:00:00登录后复制
这是VDL看到的生成结果和原始的遥感影像
4. 预测
预测的数据也需要组成拼接的数据,数据的左边随便放点啥。我想不使用配置文件的话应该不用将预测图像也进行拼接,奈何PaddleGAN小白,就先按照这个来吧~需要预测的内容可以自己使用PS等等进行绘制,使用的颜色参考数据集中的color-class.jpg(现在被移动到work目录下了),然后放到test文件夹下就好啦。下面我随便画了两张看看这只神笔能画出怎样的遥感影像~
【左】这是月亮形状的湖在裸地中,周围有几条奇奇怪怪的路。
【右】螺旋形状的路通到一个湖中小岛,岛上被植被包围,中间就一个建筑。
In [3]! python tools/main.py --config-file configs/pix2pix_rs.yaml --evaluate-only --load ../data/data82195/epoch_200_checkpoint.pdparams登录后复制
/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/setuptools/depends.py:2: DeprecationWarning: the imp module is deprecated in favour of importlib; see the module's documentation for alternative uses import imp[04/19 10:38:33] ppgan INFO: Configs: {'epochs': 200, 'output_dir': 'output_dir/pix2pix_rs-2021-04-19-10-38', 'enable_visualdl': True, 'model': {'name': 'Pix2PixModel', 'generator': {'name': 'UnetGenerator', 'norm_type': 'batch', 'input_nc': 3, 'output_nc': 3, 'num_downs': 8, 'ngf': 64, 'use_dropout': False}, 'discriminator': {'name': 'NLayerDiscriminator', 'ndf': 64, 'n_layers': 3, 'input_nc': 6, 'norm_type': 'batch'}, 'direction': 'b2a', 'pixel_criterion': {'name': 'L1Loss', 'loss_weight': 100}, 'gan_criterion': {'name': 'GANLoss', 'gan_mode': 'vanilla'}}, 'dataset': {'train': {'name': 'PairedDataset', 'dataroot': '../Dataset/train', 'num_workers': 4, 'batch_size': 1, 'preprocess': [{'name': 'LoadImageFromFile', 'key': 'pair'}, {'name': 'SplitPairedImage', 'key': 'pair', 'paired_keys': ['A', 'B']}, {'name': 'Transforms', 'input_keys': ['A', 'B'], 'pipeline': [{'name': 'Resize', 'size': [286, 286], 'interpolation': 'bicubic', 'keys': ['image', 'image']}, {'name': 'PairedRandomCrop', 'size': [256, 256], 'keys': ['image', 'image']}, {'name': 'PairedRandomHorizontalFlip', 'prob': 0.5, 'keys': ['image', 'image']}, {'name': 'Transpose', 'keys': ['image', 'image']}, {'name': 'Normalize', 'mean': [127.5, 127.5, 127.5], 'std': [127.5, 127.5, 127.5], 'keys': ['image', 'image']}]}]}, 'test': {'name': 'PairedDataset', 'dataroot': '../Dataset/test', 'num_workers': 4, 'batch_size': 1, 'preprocess': [{'name': 'LoadImageFromFile', 'key': 'pair'}, {'name': 'SplitPairedImage', 'key': 'pair', 'paired_keys': ['A', 'B']}, {'name': 'Transforms', 'input_keys': ['A', 'B'], 'pipeline': [{'name': 'Resize', 'size': [256, 256], 'interpolation': 'bicubic', 'keys': ['image', 'image']}, {'name': 'Transpose', 'keys': ['image', 'image']}, {'name': 'Normalize', 'mean': [127.5, 127.5, 127.5], 'std': [127.5, 127.5, 127.5], 'keys': ['image', 'image']}]}]}}, 'lr_scheduler': {'name': 'LinearDecay', 'learning_rate': 0.0002, 'start_epoch': 100, 'decay_epochs': 100, 'iters_per_epoch': 1}, 'optimizer': {'optimG': {'name': 'Adam', 'net_names': ['netG'], 'beta1': 0.5}, 'optimD': {'name': 'Adam', 'net_names': ['netD'], 'beta1': 0.5}}, 'log_config': {'interval': 100, 'visiual_interval': 500}, 'snapshot_config': {'interval': 5}, 'is_train': False, 'timestamp': '-2021-04-19-10-38'}W0419 10:38:33.788132 523 device_context.cc:362] Please NOTE: device: 0, GPU Compute Capability: 7.0, Driver API Version: 10.1, Runtime API Version: 10.1W0419 10:38:33.793035 523 device_context.cc:372] device: 0, cuDNN Version: 7.6.[04/19 10:38:45] ppgan.engine.trainer INFO: Loaded pretrained weight for net netG[04/19 10:38:45] ppgan.engine.trainer INFO: Loaded pretrained weight for net netD[04/19 10:38:53] ppgan.engine.trainer INFO: Test iter: [0/2]登录后复制
5. 展示
看看我们瞎画的艺术能生成怎样的遥感影像。
In [5]import cv2import matplotlib.pyplot as pltdata1 = 'output_dir/pix2pix_rs-2021-04-19-10-38/visual_test/diy0001_real_A.png'target1 = 'output_dir/pix2pix_rs-2021-04-19-10-38/visual_test/diy0001_fake_B.png'data2 = 'output_dir/pix2pix_rs-2021-04-19-10-38/visual_test/diy0002_real_A.png'target2 = 'output_dir/pix2pix_rs-2021-04-19-10-38/visual_test/diy0002_fake_B.png'data1 = cv2.cvtColor(cv2.imread(data1), cv2.COLOR_BGR2RGB)target1 = cv2.cvtColor(cv2.imread(target1), cv2.COLOR_BGR2RGB)data2 = cv2.cvtColor(cv2.imread(data2), cv2.COLOR_BGR2RGB)target2 = cv2.cvtColor(cv2.imread(target2), cv2.COLOR_BGR2RGB)plt.figure(figsize=(10, 10))plt.subplot(221);plt.imshow(data1);plt.title('data')plt.subplot(222);plt.imshow(target1);plt.title('generate')plt.subplot(223);plt.imshow(data2)plt.subplot(224);plt.imshow(target2)plt.show()登录后复制
<Figure size 720x720 with 4 Axes>登录后复制代码解释
福利游戏
相关文章
更多-
- 家里的电线老化有安全隐患,如何判断是否需要更换?
- 时间:2025-07-18
-
- 揭秘:花呗10万额度都什么人?花呗十几万额度怎么来的?
- 时间:2025-07-18
-
- 七夕节的起源和牛郎织女传说有什么紧密联系,今年七夕是哪天?
- 时间:2025-07-18
-
- 任天堂SwitchOL服务将追加新功能 招募测试玩家
- 时间:2025-07-18
-
- 关于优化IDS入侵检测系统告警误报的措施
- 时间:2025-07-18
-
- 尚界H5价格疑似曝光:分增程和纯电 最低15.98万元
- 时间:2025-07-18
-
- 2025年6月全国乘用车库存降至332万辆 环比下降13万辆
- 时间:2025-07-18
-
- 超豪华小汽车消费税起征点下调至90万元 7月20日生效
- 时间:2025-07-18
大家都在玩
热门话题
大家都在看
更多-
- 抖音否认做外卖:没有自建外卖的打算
- 时间:2025-07-18
-
- 1X2币:快速、安全的数字货币投资选择
- 时间:2025-07-18
-
- 男子为通便将15cm火腿肠塞入下体 医生:不可、应以预防为主
- 时间:2025-07-18
-
- 深圳团队研发!REDMI K90 Pro已在路上:堆料看齐大哥小米Pro
- 时间:2025-07-18
-
- 美国IT公司CEO万人演唱会上演出轨:与HR主管亲密互动被拍
- 时间:2025-07-18
-
- 2025虚拟币交易所排行:前十强
- 时间:2025-07-18
-
- OKB详细交易规则
- 时间:2025-07-18
-
- BTC矿池还有多少
- 时间:2025-07-18