位置:首页 > 新闻资讯 > Paddle.Hub 初探:快速基于预训练模型实现猫的 12 分类

Paddle.Hub 初探:快速基于预训练模型实现猫的 12 分类

时间:2025-07-24  |  作者:  |  阅读:0

本文介绍Paddle 2.1.0版本新功能Paddle.Hub API,可快速加载外部扩展模型。以用PaddleClas预训练模型实现猫的12分类为例,演示同步代码、加载模型列表与模型、预处理数据、训练模型及预测的过程,还提及该版本存在的一些问题。

Paddle.Hub 初探:快速基于预训练模型实现猫的 12 分类_wishdown.com

引入

Paddle.Hub

快速使用

In [?]

# 同步 PaddleClas 代码!git clone https://gitee.com/PaddlePaddle/PaddleClas -b develop --depth 1登录后复制 ? ?In [?]

import paddle# 加载 Repo 中的模型列表model_list = paddle.hub.list('PaddleClas', source='local', force_reload=False)print(model_list)# 查看模型帮助文档model_help = paddle.hub.help('PaddleClas', 'mobilenetv3_large_x1_25', source='local', force_reload=False)print(model_help)# 加载模型model = paddle.hub.load('PaddleClas', 'mobilenetv3_large_x1_25', source='local', force_reload=False)# 模型测试data = paddle.rand((1, 3, 224, 224))out = model(data)print(out.shape) # [1, 1000]登录后复制 ? ? ? ?

['alexnet', 'densenet121', 'densenet161', 'densenet169', 'densenet201', 'densenet264', 'googlenet', 'inceptionv3', 'inceptionv4', 'mobilenetv1', 'mobilenetv1_x0_25', 'mobilenetv1_x0_5', 'mobilenetv1_x0_75', 'mobilenetv2_x0_25', 'mobilenetv2_x0_5', 'mobilenetv2_x0_75', 'mobilenetv2_x1_5', 'mobilenetv2_x2_0', 'mobilenetv3_large_x0_35', 'mobilenetv3_large_x0_5', 'mobilenetv3_large_x0_75', 'mobilenetv3_large_x1_0', 'mobilenetv3_large_x1_25', 'mobilenetv3_small_x0_35', 'mobilenetv3_small_x0_5', 'mobilenetv3_small_x0_75', 'mobilenetv3_small_x1_0', 'mobilenetv3_small_x1_25', 'resnet101', 'resnet152', 'resnet18', 'resnet34', 'resnet50', 'resnext101_32x4d', 'resnext101_64x4d', 'resnext152_32x4d', 'resnext152_64x4d', 'resnext50_32x4d', 'resnext50_64x4d', 'shufflenetv2_x0_25', 'squeezenet1_0', 'squeezenet1_1', 'vgg11', 'vgg13', 'vgg16', 'vgg19'] MobileNetV3_large_x1_25 Args: pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise. kwargs: class_dim: int=1000. Output dim of last fc layer. Returns: model: nn.Layer. Specific `MobileNetV3_large_x1_25` model depends on args. [1, 1000]登录后复制 ? ? ? ?

已知问题

  • Paddle 2.1.0 GPU 版本暂时不太稳定,模型能够正常加载和前向计算,但是跑 PaddleHapi 的训练会直接崩溃重启(Issue 已提,Paddle 的 bug,待修复)
  • 通过 Gitee 无法加载,会报错 File is not a zip file(Issue 已提,目前该功能已从文档移除)
  • GitHub 访问速度比较慢,不过这个没啥好办法
  • 每次加载模型后,如果不重启 Notebook 内核就无法重新加载(Issue 已提,PaddleClas 的 bug,待修复)
  • PaddleClas 内的一些模型比如 MobileNet v3 系列,还无法在 PaddleHapi 中正常使用(提交的 pr 已合并)

猫的12分类

任务描述

  • 利用训练的模型来预测数据所属的类别。

数据说明

  • 本数据集包含12种类的猫的图片
  • 整个数据将被分为训练集与测试集。
  • 训练集:在训练集中,我们将提供高清彩色图片以及图片所属的分类
  • 测试集:在测试数据集中,我们仅仅提供彩色图片

解压数据集

  • 使用数据之前第一步就是对训练和测试集进行解压缩
In [?]

!unzip -q -d /home/aistudio/data/data10954 /home/aistudio/data/data10954/cat_12_train.zip!unzip -q -d /home/aistudio/data/data10954 /home/aistudio/data/data10954/cat_12_test.zip登录后复制 ? ?

数据预处理

In [?]

import osimport paddleimport randomtotal = []# 读取数据标签with open('/home/aistudio/data/data10954/train_list.txt', 'r', encoding='UTF-8') as f: for line in f: # 格式转换 line = line[:-1].split('t') total.append(' '.join(line)+'n')# 打乱数据顺序random.shuffle(total)'''切分数据集95%的数据作为训练集5%的数据作为验证集'''split_num = int(len(total)*0.95) # 写入训练数据列表with open('/home/aistudio/data/data10954/train.txt', 'w', encoding='UTF-8') as f: for line in total[:split_num]: f.write(line)# 写入验证数据列表with open('/home/aistudio/data/data10954/dev.txt', 'w', encoding='UTF-8') as f: for line in total[split_num:]: f.write(line)# 写入测试数据列表with open('/home/aistudio/data/data10954/test.txt', 'w', encoding='UTF-8') as f: for line in ['cat_12_test/%sn' % img for img in os.listdir('/home/aistudio/data/data10954/cat_12_test')]: f.write(line)登录后复制 ? ?

模型训练

  • 模型训练的一般步骤如下:

    1. 搭建模型
    2. 构建数据集和数据读取器
    3. 配置各种参数
    4. 构建训练任务
    5. 开始训练模型
  • 注:启动训练前请重启 Notebook 内核

  • 注:目前只有 CPU 环境才可以正常运行如下代码

In [?]

import osimport paddleimport randomimport paddle.nn as nnimport paddle.vision.transforms as T# 构建数据集class CatDataset(paddle.io.Dataset): def __init__(self, transforms, dataset_path='/home/aistudio/data/data10954', mode='train'): self.mode = mode self.dataset_path = dataset_path self.transforms = transforms self.num_classes = 5 if self.mode == 'train': self.file = 'train.txt' elif self.mode == 'dev': self.file = 'dev.txt' else: self.file = 'test.txt' self.file = os.path.join(dataset_path, self.file) with open(self.file, 'r') as file: self.data = file.read()[:-1].split('n') def __getitem__(self, idx): if self.mode in ['train', 'dev']: img_path, grt = self.data[idx].split(' ') img_path = os.path.join(self.dataset_path, img_path) im = paddle.vision.image_load(img_path) im = im.convert(”RGB“) im = self.transforms(im) return im, int(grt) else: img_path = self.data[idx] img_path = os.path.join(self.dataset_path, img_path) im = paddle.vision.image_load(img_path) im = im.convert(”RGB“) im = self.transforms(im) return im def __len__(self): return len(self.data)# 加载数据集train_transforms = T.Compose([ T.Resize(256), T.RandomCrop(224), T.RandomHorizontalFlip(), T.RandomVerticalFlip(), T.ToTensor(), T.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])])test_transforms = T.Compose([ T.Resize(256), T.CenterCrop(224), T.ToTensor(), T.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])])train_dataset = CatDataset(train_transforms, mode='train')dev_dataset = CatDataset(test_transforms, mode='dev')test_dataset = CatDataset(test_transforms, mode='test')# 加载模型model = paddle.hub.load('PaddleClas', 'mobilenetv3_large_x0_5', source='local', force_reload=False, class_dim=12, pretrained=True)model = paddle.Model(model)# 定义优化器opt = paddle.optimizer.Adam(learning_rate=0.001, parameters=model.parameters())# 配置模型model.prepare(optimizer=opt, loss=nn.CrossEntropyLoss(), metrics=paddle.metric.Accuracy(topk=(1, 5)))model.fit( train_data=train_dataset, eval_data=dev_dataset, batch_size=32, epochs=2, eval_freq=1, log_freq=1, save_dir='save_models', save_freq=1, verbose=1, drop_last=False, shuffle=True, num_workers=0)登录后复制 ? ? ? ?

2021-05-18 12:43:59 INFO: unique_endpoints {''}2021-05-18 12:43:59 INFO: Downloading MobileNetV3_large_x0_5_pretrained.pdparams from https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV3_large_x0_5_pretrained.pdparams100%|██████████| 15875/15875 [00:00<00:00, 18983.36it/s]/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/paddle/fluid/dygraph/layers.py:1297: UserWarning: Skip loading for out.weight. out.weight receives a shape [1280, 1000], but the expected shape is [1280, 12]. warnings.warn((”Skip loading for {}. “.format(key) + str(err)))/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/paddle/fluid/dygraph/layers.py:1297: UserWarning: Skip loading for out.bias. out.bias receives a shape [1000], but the expected shape is [12]. warnings.warn((”Skip loading for {}. “.format(key) + str(err)))登录后复制 ? ? ? ?

The loss value printed in the log is the current step, and the metric is the average value of previous steps.Epoch 1/2登录后复制 ? ? ? ?

/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/paddle/fluid/layers/utils.py:77: DeprecationWarning: Using or importing the ABCs from 'collections' instead of from 'collections.abc' is deprecated, and in 3.8 it will stop working return (isinstance(seq, collections.Sequence) and登录后复制 ? ? ? ?

step 65/65 [==============================] - loss: 2.7684 - acc_top1: 0.6628 - acc_top5: 0.9464 - 3s/step save checkpoint at /home/aistudio/save_models/0Eval begin...step 4/4 [==============================] - loss: 0.8948 - acc_top1: 0.7685 - acc_top5: 0.9907 - 732ms/step Eval samples: 108Epoch 2/2step 65/65 [==============================] - loss: 0.5738 - acc_top1: 0.8397 - acc_top5: 0.9942 - 3s/step save checkpoint at /home/aistudio/save_models/1Eval begin...step 4/4 [==============================] - loss: 0.5484 - acc_top1: 0.8611 - acc_top5: 0.9907 - 779ms/step Eval samples: 108save checkpoint at /home/aistudio/save_models/final登录后复制 ? ? ? ?

模型预测

  • 模型预测一般步骤:

    1. 读取数据
    2. 模型预测
    3. 预测结果后处理
    4. 输出最终结果
In [?]

import numpy as np# 模型预测results = model.predict(test_dataset, batch_size=32, num_workers=0, stack_outputs=True, callbacks=None)# 对预测结果进行后处理total = []for img, result in zip(test_dataset.data, np.argmax(results[0], 1)): total.append('%s,%sn' % (img.split('/')[-1], result))# 生成结果文件with open('result.csv','w') as f: for line in total: f.write(line)登录后复制 ? ? ? ?

Predict begin...step 8/8 [==============================] - 805ms/step Predict samples: 240登录后复制 ? ? ? ?

福利游戏

相关文章

更多

精选合集

更多

大家都在玩

热门话题

大家都在看

更多