DETR:基于transformer实现端到端目标检测
时间:2025-07-24 | 作者: | 阅读:0本文复现DETR目标检测方案,基于Transformer实现端到端检测,无需NMS或anchor生成。模型含CNN(Res50)+Transformer+FFN结构,用二分图匹配与匈牙利算法处理预测框。适配Paddle 2.0,修复BUG并对齐精度,DETR-DC5变体在COCO2017验证集MAP达0.431。
模型介绍
论文复现第三期DETR方案, 精确度MAP为0.431
End-to-End Object Detection with Transformers
参考代码: https://aistudio.baidu.com/aistudio/projectdetail/1327221
- 在大佬的基础上进行修改,包括Paddle 2.0适配, BUG修复,以及精度对齐等工作
github pytorch代码:?https://github.com/facebookresearch/detr
论文地址:?https://arxiv.org/pdf/1706.03762.pdf
- 基于transformer实现端到端目标检测, 两大主要组成,一者是预测的匹配损失函数,再者预测目标和他们的关系。
- 不需要使用NMS或者anchor生成, 本文能将该任务的先验知识进行编码。DETR结合目标关联关系和上下文直接并行输出最终的预测集。
- Bipartite Matching二分图最大匹配, 将节点集V分割为互不相割的子集。训练时将预测框和GT boxes进行匹配。若没有找到匹配的预测框作为"no object"。 最终计算匹配损失。
- transformer的自注意力机制,专门对序列中成对交互的元素进行建模,所以也很好解决去除重复框
- 推理出的box坐标是直接基于输入图片而不是基于anchor
- 先预设固定数量的预测量,通常比图像的目标数量多。南调是对预测目标进行评分,使用最低成对匹配成本,用到匈牙利算法。线性组合IOU损失和L1损失。
- 网络结构由cnn(res50)+transformer+FFN. 常用的backbone都可以用。cnn到transformer通过1x1卷积进行降维,空间维度压缩到一维, FFN由3层MLP+relu组成。
- backbone和transformer分开训练,学习率设置不一样。具体是怎样的方式?
- 关于transformer,
- 其实就是全连接(或一维卷积)加上attention结合体,对于局部特征捕获能力稍欠缺。
- 编解码结构较大的局限性是固定长度的语义向量, 编码器压缩成一个固长向量无法表示整个序列信息, 前期信息容易被后序信息覆盖,解码时输入每个单词权重不一致。
- attention解决编解码结构的弊端,编码器时将正序和逆序的隐藏层状态结合起来, 解码时步骤,1.计算编码器隐藏层状态和解码器隐藏层状态间的相关程度并用softmax归一化得到权重值, 2. 计算语义编码向量的加权和,3. 根据加权和计算隐藏状态和解码器输出。不同编解码结构的是解码时选择性的从向量序列中挑选。
- soft attention缺点是每次decode都会计算所有编码器隐藏层状态向量,计算复杂度较高。hard attention每次近选择一个source进行计算,缺点是不可微,无法反向传播。
- global attetion也属于soft attention, 只是计算权重公式上有差别。实验表明general方式好一些。
- local attention, 每次选择一部分source进行计算, 既减少计算量又能可微。思路是为decoder预测一个source位置,然后基于位置选择一个窗口用于计算编码向量。关键是怎么确定pt位置, monotoic或predictive。
- self attention, 传统attention是基于target和source间的相似度,而self是发生在target内部或者source内部的相似关联。self更容易捕获长距依赖特征。query和key点积相当于给每个单词打分,决定了编码单词时重视句子其他部分的程度。softmax决定了其他单词对当前单词编码的贡献,self作为最大,其他单词也很有参考作用。
- transformer和attention机制一样,只是更复杂,多个encoder和docoder堆叠一起, encoder包含self-attention(不仅仅当前词还有上下文)和神经网络层(可并行),decoder多了一层attention(当前需关注的重点内容)。encoder前要对输入数据进行embedding操作。
- 位置编码, transformer缺少解释序列中单词顺序的方法,positional encoding在维度上和embedding一样,偶数位置正弦编码,奇数位置余弦编码,决定当前词的位置或不同词间距离,并且模型可学习到。
- 多头注意力,主要扩展了模型专注不同位置的能力,给出了注意力层的多个表示子空间。8个头就有8套qkv矩阵,每个头的qkv矩阵权重独立,将这些矩阵拼接在一起并用附加权重矩阵相乘。
- transformer还使用到了残差和layer norm。LN是在每一个样本上计算均值和方差,而不是BN那种在批方向计算均值和方差。还用到了mask,掩盖值,使其参数更新时不产生效果, padding mask在较短序列填充0,Sequence mask只依赖t之前的信息,将t之后信息掩盖起来。
关于数据集COCO2017
COCO的全称是Common Objects in Context,是微软团队提供的一个可以用来进行图像识别的数据集。MS COCO数据集中的图像分为训练、验证和测试集。其行业地位就不再多少了,本文主要梳理一下该数据集包含的内容。下图是官网给出的可下载的数据集(更新时间2020年01月09日),从这里可看出其数据集主要包括有标注的和无标注的数据。
#解压数据集%cd /home/aistudio/data/data7122/ !unzip train2017.zip!unzip val2017.zip !unzip annotations_trainval2017.zip登录后复制 ? ?In [?]
#加载数据集%cd ~/my_detr!python coco_dataset.py登录后复制 ? ?
模型结构搭建
- Backbone在resnet50基础上修改,支持DC5变体
- 搭建transformer结构
- 搭建后处理包括匈牙利匹配算法
- 损失函数
- 后处理
核心代码主要有:
- model.py
- resnet.py
- backbone.py
- transformer.py
<br/>登录后复制 ? ?
精度对齐
因为loss函数以及后处理较为复杂,所以这里特定还用了loss精度对齐
输出结果结果精度对齐
模拟tensor输入: image = [paddle.ones(shape=[3, 800, 1199])] samples.tensors = torch.ones(1, 3, 800, 1199) 因为resize对图像输入有一定差距,所以使用ones的张量, 比如使用样例数据, 0.348(torch) vs 0.31(paddle)
pytorch结果:
? ? ? ?paddle结果:
? ? ? ?LOSS 精度对齐
相差小数点2位
Pytorch的结果:
? ? ? ?PaddlePaddle的结果:
? ? ? ?训练DETR
In [?]#开始训练%cd ~/my_detr!python train_val.py train登录后复制 ? ? ? ?
/home/aistudio/my_detr/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/paddle/fluid/layers/utils.py:26: DeprecationWarning: `np.int` is a deprecated alias for the builtin `int`. To silence this warning, use `int` by itself. Doing this will not modify any behavior and is safe. When replacing `np.int`, you may wish to use e.g. `np.int64` or `np.int32` to specify the precision. If you wish to review your current use, check the release note link for additional information.Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations def convert_to_list(value, n, name, dtype=np.int):/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/matplotlib/__init__.py:107: DeprecationWarning: Using or importing the ABCs from 'collections' instead of from 'collections.abc' is deprecated, and in 3.8 it will stop working from collections import MutableMapping/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/matplotlib/rcsetup.py:20: DeprecationWarning: Using or importing the ABCs from 'collections' instead of from 'collections.abc' is deprecated, and in 3.8 it will stop working from collections import Iterable, Mapping/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/matplotlib/colors.py:53: DeprecationWarning: Using or importing the ABCs from 'collections' instead of from 'collections.abc' is deprecated, and in 3.8 it will stop working from collections import Sized---->{'hidden_dim': 256, 'lr_backbone': -1, 'masks': False, 'dilation': False, 'backbone': 'resnet50', 'num_classes': 91, 'dropout': 0.1, 'nheads': 8, 'dim_feedforward': 2048, 'enc_layers': 6, 'dec_layers': 6, 'pre_norm': False, 'num_queries': 100, 'aux_loss': True, 'set_cost_class': 1, 'set_cost_bbox': 5, 'set_cost_giou': 2, 'bbox_loss_coef': 5, 'giou_loss_coef': 2, 'eos_coef': 0.1, 'coco_path': '/home/aistudio/data/data7122', 'lr': 1e-06, 'clip_max_norm': 0.1, 'batch_size': 8, 'epochs': 2}{'num_classes': 91, 'norm_layer': <class 'backbone.FrozenBatchNorm2d'>}block <class 'resnet.BottleneckBlock'>[False, False, False]W0514 19:16:37.620630 26619 device_context.cc:362] Please NOTE: device: 0, GPU Compute Capability: 7.0, Driver API Version: 11.0, Runtime API Version: 10.1W0514 19:16:37.627422 26619 device_context.cc:372] device: 0, cuDNN Version: 7.6.debug: 1 1debug: 2 1debug: 2 1debug: 2 1Epoch 0: StepDecay set learning rate to 1e-06.loading annotations into memory...Done (t=0.56s)creating index...index created!loading annotations into memory...Done (t=0.69s)creating index...index created!/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/paddle/fluid/framework.py:687: DeprecationWarning: `np.bool` is a deprecated alias for the builtin `bool`. To silence this warning, use `bool` by itself. Doing this will not modify any behavior and is safe. If you specifically wanted the numpy scalar type, use `np.bool_` here.Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations elif dtype == np.bool:/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/paddle/tensor/creation.py:143: DeprecationWarning: `np.object` is a deprecated alias for the builtin `object`. To silence this warning, use `object` by itself. Doing this will not modify any behavior and is safe. Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations if data.dtype == np.object:/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/paddle/fluid/dygraph/math_op_patch.py:238: UserWarning: The dtype of left and right variables are not the same, left dtype is VarType.FP32, but right dtype is VarType.INT64, the right dtype will convert to VarType.FP32 format(lhs_dtype, rhs_dtype, lhs_dtype))epoch: 0, batch_id: 0, loss: 10.05978012084961epoch: 0, batch_id: 100, loss: 6.360683917999268epoch: 0, batch_id: 200, loss: 6.134881973266602epoch: 0, batch_id: 300, loss: 7.114040851593018epoch: 0, batch_id: 400, loss: 6.500746250152588epoch: 0, batch_id: 500, loss: 6.7673797607421875epoch: 0, batch_id: 600, loss: 5.745387554168701epoch: 1, batch_id: 0, loss: 7.610352993011475epoch: 1, batch_id: 100, loss: 5.726753234863281epoch: 1, batch_id: 200, loss: 5.837918758392334epoch: 1, batch_id: 300, loss: 6.997137069702148epoch: 1, batch_id: 400, loss: 6.292409420013428epoch: 1, batch_id: 500, loss: 6.677578926086426epoch: 1, batch_id: 600, loss: 5.692938327789307登录后复制 ? ? ? ?
验证DETR
In [14]%cd ~/my_detr!python train_val.py eval登录后复制 ? ? ? ?
/home/aistudio/my_detr/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/paddle/fluid/layers/utils.py:26: DeprecationWarning: `np.int` is a deprecated alias for the builtin `int`. To silence this warning, use `int` by itself. Doing this will not modify any behavior and is safe. When replacing `np.int`, you may wish to use e.g. `np.int64` or `np.int32` to specify the precision. If you wish to review your current use, check the release note link for additional information.Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations def convert_to_list(value, n, name, dtype=np.int):/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/matplotlib/__init__.py:107: DeprecationWarning: Using or importing the ABCs from 'collections' instead of from 'collections.abc' is deprecated, and in 3.8 it will stop working from collections import MutableMapping/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/matplotlib/rcsetup.py:20: DeprecationWarning: Using or importing the ABCs from 'collections' instead of from 'collections.abc' is deprecated, and in 3.8 it will stop working from collections import Iterable, Mapping/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/matplotlib/colors.py:53: DeprecationWarning: Using or importing the ABCs from 'collections' instead of from 'collections.abc' is deprecated, and in 3.8 it will stop working from collections import Sized---->{'hidden_dim': 256, 'lr_backbone': -1, 'masks': False, 'dilation': False, 'backbone': 'resnet50', 'num_classes': 91, 'dropout': 0.1, 'nheads': 8, 'dim_feedforward': 2048, 'enc_layers': 6, 'dec_layers': 6, 'pre_norm': False, 'num_queries': 100, 'aux_loss': True, 'set_cost_class': 1, 'set_cost_bbox': 5, 'set_cost_giou': 2, 'bbox_loss_coef': 5, 'giou_loss_coef': 2, 'eos_coef': 0.1, 'coco_path': '/home/aistudio/data/data7122', 'lr': 1e-06, 'clip_max_norm': 0.1, 'batch_size': 8, 'epochs': 2}{'num_classes': 91, 'norm_layer': <class 'backbone.FrozenBatchNorm2d'>}block <class 'resnet.BottleneckBlock'>[False, False, False]W0514 21:08:15.278102 7932 device_context.cc:362] Please NOTE: device: 0, GPU Compute Capability: 7.0, Driver API Version: 11.0, Runtime API Version: 10.1W0514 21:08:15.283421 7932 device_context.cc:372] device: 0, cuDNN Version: 7.6.debug: 1 1debug: 2 1debug: 2 1debug: 2 1Epoch 0: StepDecay set learning rate to 1e-06.loading annotations into memory...Done (t=0.55s)creating index...index created!loading annotations into memory...Done (t=0.68s)creating index...index created!/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/paddle/fluid/framework.py:687: DeprecationWarning: `np.bool` is a deprecated alias for the builtin `bool`. To silence this warning, use `bool` by itself. Doing this will not modify any behavior and is safe. If you specifically wanted the numpy scalar type, use `np.bool_` here.Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations elif dtype == np.bool:/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/paddle/fluid/dygraph/math_op_patch.py:238: UserWarning: The dtype of left and right variables are not the same, left dtype is VarType.FP32, but right dtype is VarType.INT64, the right dtype will convert to VarType.FP32 format(lhs_dtype, rhs_dtype, lhs_dtype))Accumulating evaluation results.../opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/pycocotools/cocoeval.py:378: DeprecationWarning: `np.float` is a deprecated alias for the builtin `float`. To silence this warning, use `float` by itself. Doing this will not modify any behavior and is safe. If you specifically wanted the numpy scalar type, use `np.float64` here.Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations tp_sum = np.cumsum(tps, axis=1).astype(dtype=np.float)/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/pycocotools/cocoeval.py:379: DeprecationWarning: `np.float` is a deprecated alias for the builtin `float`. To silence this warning, use `float` by itself. Doing this will not modify any behavior and is safe. If you specifically wanted the numpy scalar type, use `np.float64` here.Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations fp_sum = np.cumsum(fps, axis=1).astype(dtype=np.float)DONE (t=11.61s).IoU metric: bbox Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.420 Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.624 Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.442 Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.213 Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.460 Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.611 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.334 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.533 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.575 Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.325 Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.631 Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.809登录后复制 ? ? ? ?
训练DETR-DC5
这个模型非常耗显存, 很难训练
In [?]#开始训练DC5%cd ~/my_detr!python train_val_dc5.py train登录后复制 ? ? ? ?
/home/aistudio/my_detr/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/paddle/fluid/layers/utils.py:26: DeprecationWarning: `np.int` is a deprecated alias for the builtin `int`. To silence this warning, use `int` by itself. Doing this will not modify any behavior and is safe. When replacing `np.int`, you may wish to use e.g. `np.int64` or `np.int32` to specify the precision. If you wish to review your current use, check the release note link for additional information.Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations def convert_to_list(value, n, name, dtype=np.int):/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/matplotlib/__init__.py:107: DeprecationWarning: Using or importing the ABCs from 'collections' instead of from 'collections.abc' is deprecated, and in 3.8 it will stop working from collections import MutableMapping/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/matplotlib/rcsetup.py:20: DeprecationWarning: Using or importing the ABCs from 'collections' instead of from 'collections.abc' is deprecated, and in 3.8 it will stop working from collections import Iterable, Mapping/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/matplotlib/colors.py:53: DeprecationWarning: Using or importing the ABCs from 'collections' instead of from 'collections.abc' is deprecated, and in 3.8 it will stop working from collections import Sized---->{'hidden_dim': 256, 'lr_backbone': -1, 'masks': False, 'dilation': True, 'backbone': 'resnet50', 'num_classes': 91, 'dropout': 0.1, 'nheads': 8, 'dim_feedforward': 2048, 'enc_layers': 6, 'dec_layers': 6, 'pre_norm': False, 'num_queries': 100, 'aux_loss': True, 'set_cost_class': 1, 'set_cost_bbox': 5, 'set_cost_giou': 2, 'bbox_loss_coef': 5, 'giou_loss_coef': 2, 'eos_coef': 0.1, 'coco_path': '/home/aistudio/data/data7122', 'lr': 1e-06, 'clip_max_norm': 0.1, 'batch_size': 1, 'epochs': 1}{'num_classes': 91, 'replace_stride_with_dilation': [False, False, True], 'norm_layer': <class 'backbone.FrozenBatchNorm2d'>}block <class 'resnet.BottleneckBlock'>[False, False, True]W0514 17:11:00.507395 24269 device_context.cc:362] Please NOTE: device: 0, GPU Compute Capability: 7.0, Driver API Version: 11.0, Runtime API Version: 10.1W0514 17:11:00.512784 24269 device_context.cc:372] device: 0, cuDNN Version: 7.6.debug: 1 1debug: 2 1debug: 2 1debug: 1 2530Epoch 0: StepDecay set learning rate to 1e-06.loading annotations into memory...Done (t=0.57s)creating index...index created!loading annotations into memory...Done (t=0.70s)creating index...index created!/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/paddle/fluid/framework.py:687: DeprecationWarning: `np.bool` is a deprecated alias for the builtin `bool`. To silence this warning, use `bool` by itself. Doing this will not modify any behavior and is safe. If you specifically wanted the numpy scalar type, use `np.bool_` here.Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations elif dtype == np.bool:/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/paddle/tensor/creation.py:143: DeprecationWarning: `np.object` is a deprecated alias for the builtin `object`. To silence this warning, use `object` by itself. Doing this will not modify any behavior and is safe. Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations if data.dtype == np.object:/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/paddle/fluid/dygraph/math_op_patch.py:238: UserWarning: The dtype of left and right variables are not the same, left dtype is VarType.FP32, but right dtype is VarType.INT64, the right dtype will convert to VarType.FP32 format(lhs_dtype, rhs_dtype, lhs_dtype))epoch: 0, batch_id: 0, loss: 5.015964031219482epoch: 0, batch_id: 100, loss: 14.247769355773926epoch: 0, batch_id: 200, loss: 7.298154830932617epoch: 0, batch_id: 300, loss: 1.0471426248550415epoch: 0, batch_id: 400, loss: 7.584997653961182epoch: 0, batch_id: 500, loss: 3.577380895614624epoch: 0, batch_id: 600, loss: 4.61794900894165epoch: 0, batch_id: 700, loss: 5.049403667449951epoch: 0, batch_id: 800, loss: 5.122508525848389epoch: 0, batch_id: 900, loss: 3.216052770614624epoch: 0, batch_id: 1000, loss: 3.3042514324188232epoch: 0, batch_id: 1100, loss: 4.413068771362305epoch: 0, batch_id: 1200, loss: 7.288424015045166epoch: 0, batch_id: 1300, loss: 6.1409735679626465epoch: 0, batch_id: 1400, loss: 10.504143714904785epoch: 0, batch_id: 1500, loss: 3.685210704803467epoch: 0, batch_id: 1600, loss: 2.6168665885925293epoch: 0, batch_id: 1700, loss: 22.14373016357422epoch: 0, batch_id: 1800, loss: 8.267280578613281epoch: 0, batch_id: 1900, loss: 1.4486600160598755epoch: 0, batch_id: 2000, loss: 4.107017993927002epoch: 0, batch_id: 2100, loss: 9.582965850830078epoch: 0, batch_id: 2200, loss: 6.967478275299072epoch: 0, batch_id: 2300, loss: 15.338693618774414epoch: 0, batch_id: 2400, loss: 13.399685859680176epoch: 0, batch_id: 2500, loss: 1.4326478242874146epoch: 0, batch_id: 2600, loss: 6.990074157714844epoch: 0, batch_id: 2700, loss: 8.32422161102295epoch: 0, batch_id: 2800, loss: 5.453993797302246epoch: 0, batch_id: 2900, loss: 7.272365093231201epoch: 0, batch_id: 3000, loss: 8.217702865600586epoch: 0, batch_id: 3100, loss: 2.2091081142425537epoch: 0, batch_id: 3200, loss: 0.9168111085891724epoch: 0, batch_id: 3300, loss: 1.9928405284881592epoch: 0, batch_id: 3400, loss: 6.245678424835205epoch: 0, batch_id: 3500, loss: 8.91486930847168epoch: 0, batch_id: 3600, loss: 6.916267395019531epoch: 0, batch_id: 3700, loss: 4.461080551147461epoch: 0, batch_id: 3800, loss: 8.265044212341309epoch: 0, batch_id: 3900, loss: 8.603659629821777epoch: 0, batch_id: 4000, loss: 4.085428714752197epoch: 0, batch_id: 4100, loss: 10.250466346740723epoch: 0, batch_id: 4200, loss: 2.327882766723633epoch: 0, batch_id: 4300, loss: 3.273315906524658epoch: 0, batch_id: 4400, loss: 6.719542026519775epoch: 0, batch_id: 4500, loss: 3.232994794845581epoch: 0, batch_id: 4600, loss: 4.106349945068359epoch: 0, batch_id: 4700, loss: 1.6361501216888428epoch: 0, batch_id: 4800, loss: 4.615266799926758epoch: 0, batch_id: 4900, loss: 8.394232749938965start evaluating....Accumulating evaluation results.../opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/pycocotools/cocoeval.py:378: DeprecationWarning: `np.float` is a deprecated alias for the builtin `float`. To silence this warning, use `float` by itself. Doing this will not modify any behavior and is safe. If you specifically wanted the numpy scalar type, use `np.float64` here.Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations tp_sum = np.cumsum(tps, axis=1).astype(dtype=np.float)/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/pycocotools/cocoeval.py:379: DeprecationWarning: `np.float` is a deprecated alias for the builtin `float`. To silence this warning, use `float` by itself. Doing this will not modify any behavior and is safe. If you specifically wanted the numpy scalar type, use `np.float64` here.Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations fp_sum = np.cumsum(fps, axis=1).astype(dtype=np.float)DONE (t=9.37s).IoU metric: bbox Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.432 Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.634 Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.458 Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.223 Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.471 Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.612 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.340 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.551 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.591 Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.334 Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.642 Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.815save weights with map: 0.43226377363430357登录后复制 ? ? ? ?
验证DETR-DC5
In [15]#验证DETR-DC5%cd ~/my_detr!python train_val_dc5.py eval登录后复制 ? ? ? ?
/home/aistudio/my_detr/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/paddle/fluid/layers/utils.py:26: DeprecationWarning: `np.int` is a deprecated alias for the builtin `int`. To silence this warning, use `int` by itself. Doing this will not modify any behavior and is safe. When replacing `np.int`, you may wish to use e.g. `np.int64` or `np.int32` to specify the precision. If you wish to review your current use, check the release note link for additional information.Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations def convert_to_list(value, n, name, dtype=np.int):/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/matplotlib/__init__.py:107: DeprecationWarning: Using or importing the ABCs from 'collections' instead of from 'collections.abc' is deprecated, and in 3.8 it will stop working from collections import MutableMapping/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/matplotlib/rcsetup.py:20: DeprecationWarning: Using or importing the ABCs from 'collections' instead of from 'collections.abc' is deprecated, and in 3.8 it will stop working from collections import Iterable, Mapping/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/matplotlib/colors.py:53: DeprecationWarning: Using or importing the ABCs from 'collections' instead of from 'collections.abc' is deprecated, and in 3.8 it will stop working from collections import Sized---->{'hidden_dim': 256, 'lr_backbone': -1, 'masks': False, 'dilation': True, 'backbone': 'resnet50', 'num_classes': 91, 'dropout': 0.1, 'nheads': 8, 'dim_feedforward': 2048, 'enc_layers': 6, 'dec_layers': 6, 'pre_norm': False, 'num_queries': 100, 'aux_loss': True, 'set_cost_class': 1, 'set_cost_bbox': 5, 'set_cost_giou': 2, 'bbox_loss_coef': 5, 'giou_loss_coef': 2, 'eos_coef': 0.1, 'coco_path': '/home/aistudio/data/data7122', 'lr': 1e-06, 'clip_max_norm': 0.1, 'batch_size': 1, 'epochs': 1}{'num_classes': 91, 'replace_stride_with_dilation': [False, False, True], 'norm_layer': <class 'backbone.FrozenBatchNorm2d'>}block <class 'resnet.BottleneckBlock'>[False, False, True]W0514 21:21:04.015319 9341 device_context.cc:362] Please NOTE: device: 0, GPU Compute Capability: 7.0, Driver API Version: 11.0, Runtime API Version: 10.1W0514 21:21:04.020784 9341 device_context.cc:372] device: 0, cuDNN Version: 7.6.debug: 1 1debug: 2 1debug: 2 1debug: 1 2Epoch 0: StepDecay set learning rate to 1e-06.loading annotations into memory...Done (t=0.56s)creating index...index created!loading annotations into memory...Done (t=0.69s)creating index...index created!/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/paddle/fluid/framework.py:687: DeprecationWarning: `np.bool` is a deprecated alias for the builtin `bool`. To silence this warning, use `bool` by itself. Doing this will not modify any behavior and is safe. If you specifically wanted the numpy scalar type, use `np.bool_` here.Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations elif dtype == np.bool:/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/paddle/fluid/dygraph/math_op_patch.py:238: UserWarning: The dtype of left and right variables are not the same, left dtype is VarType.FP32, but right dtype is VarType.INT64, the right dtype will convert to VarType.FP32 format(lhs_dtype, rhs_dtype, lhs_dtype))Accumulating evaluation results.../opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/pycocotools/cocoeval.py:378: DeprecationWarning: `np.float` is a deprecated alias for the builtin `float`. To silence this warning, use `float` by itself. Doing this will not modify any behavior and is safe. If you specifically wanted the numpy scalar type, use `np.float64` here.Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations tp_sum = np.cumsum(tps, axis=1).astype(dtype=np.float)/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/pycocotools/cocoeval.py:379: DeprecationWarning: `np.float` is a deprecated alias for the builtin `float`. To silence this warning, use `float` by itself. Doing this will not modify any behavior and is safe. If you specifically wanted the numpy scalar type, use `np.float64` here.Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations fp_sum = np.cumsum(fps, axis=1).astype(dtype=np.float)DONE (t=9.90s).IoU metric: bbox Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.431 Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.630 Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.458 Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.223 Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.470 Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.609 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.340 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.549 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.593 Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.339 Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.645 Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.812登录后复制 ? ? ? ?
福利游戏
相关文章
更多-
- 三角洲行动长弓溪谷钥匙房怎么刷 长弓溪谷钥匙房速刷方法
- 时间:2025-07-25
-
- 豆包AI怎样生成Markdown文档?技术文章排版自动化
- 时间:2025-07-25
-
- 王化晒入职小米10周年纪念:雷军亲自感谢
- 时间:2025-07-25
-
- 逸剑风云决秘籍怎么获取 秘籍获取方式详细介绍
- 时间:2025-07-25
-
- 时光大爆炸蛮族入侵怎么玩 蛮族入侵玩法详细攻略
- 时间:2025-07-25
-
- 明日之后半感染者怎么变身 明日半感染者变身教程
- 时间:2025-07-25
-
- 奥特曼超时空英雄隐藏角色有哪些 隐藏英雄获取方法
- 时间:2025-07-25
-
- 七日世界哪里刷皮最多七日 熊洞高效刷皮地点分享
- 时间:2025-07-25
大家都在玩
大家都在看
更多-
- 黄仁勋:英伟达离职率只有0.9% 随身携带秘密期权池奖励员工
- 时间:2025-07-25
-
- 恶意侮辱攻击企业家、号召抵制新能源品牌!“雷米侃电车”等多位汽车博主被禁言
- 时间:2025-07-25
-
- ARKW转投加拿大比特币ETF
- 时间:2025-07-25
-
- 首款可折叠iPhone屏幕尺寸曝光:7.8英寸内屏+5.5英寸外屏
- 时间:2025-07-25
-
- 中国以太坊持有者最多的人是谁
- 时间:2025-07-25
-
- 玩明末:渊虚之羽时RTX 5090接口烧毁!资深编辑记录下完整过程
- 时间:2025-07-25
-
- 七彩虹限定熊猫游戏本首发8099元:熊猫主题设计 搭载星知岛AI
- 时间:2025-07-25
-
- 远光84变变龙怎么玩
- 时间:2025-07-25